Evaluating the Effect of Last-Level Cache Sharing on Integrated
GPU-CPU Systems with Heterogeneous Applications

1, 3 1,

Victor Garcial’2 Juan Gémez-Luna® Thomas Grass

2 Alejandro Rico

* Eduard Ayguade''> Antonio J. Pefia®

Universitat Politécnica de Catalunya 2Barcelona Supercomputing Center Universidad de Cérdoba *ARM Inc.

Heterogeneous systems are ubiquitous in the field of High-
Performance Computing (HPC). Graphics processing units
(GPUs) are widely used as accelerators for their enormous
computing potential and energy efficiency; furthermore, on-die
integration of GPUs and general-purpose cores (CPUs) enables
unified virtual address spaces and seamless sharing of data
structures, improving programmability and softening the entry
barrier for heterogeneous programming. Although on-die GPU
integration seems to be the trend among the major microprocessor
manufacturers, there are still many open questions regarding the
architectural design of these systems. This paper is a step forward
towards understanding the effect of on-chip resource sharing
between GPU and CPU cores, and in particular, of the impact
of last-level cache (LLC) sharing in heterogeneous computations.
To this end, we analyze the behavior of a variety of heterogeneous
GPU-CPU benchmarks on different cache configurations.

We perform an evaluation of the popular Rodinia benchmark
suite modified to leverage the unified memory address space. We
find such GPGPU workloads to be mostly insensitive to changes in
the cache hierarchy due to the limited interaction and data sharing
between GPU and CPU. We then evaluate a set of heterogeneous
benchmarks specifically designed to take advantage of the fine-
grained data sharing and low-overhead synchronization between
GPU and CPU cores that these integrated architectures enable.
We show how these algorithms are more sensitive to the design
of the cache hierarchy, and find that when GPU and CPU share
the LLC execution times are reduced by 25% on average, and
energy-to-solution by over 20% for all benchmarks.

I. INTRODUCTION

Resource sharing within heterogeneous GPU-CPU systems
has gotten some attention in the literature over the last few
years. The ubiquity of these systems integrating GPU and CPU
cores on the same die has prompted researchers to analyze
the effect of sharing resources such as the last-level cache
(LLCO) [1], [2], the memory controller [3]-[5], or the network-
on-chip [6]. Most of these works start with the premise that
GPU and CPU applications exhibit different characteristics
(spatial vs. temporal locality) and have different requirements
(high bandwidth vs. low latency), and therefore careful manage-
ment of the shared resources is necessary to guarantee fairness
and maximize performance. To evaluate their proposals, the
authors use multiprogrammed workloads composed of a mix
of GPU and CPU applications running concurrently.

The tight integration of CPU and GPU cores enables a
unified virtual address space and hardware-managed coherence,
increasing programmer productivity by eliminating the need for
explicit memory management. Devices can seamlessly share
data structures and perform fine-grained synchronization via
atomic operations. In this manner, algorithms can be divided in

978-1-5090-3896-1/16/$31.00 ©2016 IEEE

168

smaller steps that can be executed on the device they are best
suited for (i.e., data parallel regions on the GPU or serial/low
data parallelism regions on the CPU). Using multiprogrammed
workloads to evaluate resource sharing can give insights into
the challenges of GPU-CPU integration, but we believe it is
not representative of future HPC applications that will fully
leverage the capabilities of such systems.

This paper analyzes the impact of LLC sharing in heteroge-
neous computations where GPU and CPU collaborate to reach
a solution, leveraging the unified virtual address space and low
overhead synchronization. Our intent is to present guidelines
for the cache configuration of future integrated architectures,
as well as for applications to best benefit from these.

We first evaluate a set of kernels from the Rodinia benchmark
suite modified to use the unified virtual address space, and show
that on average sharing the LLC can reduce execution time
by 13%, mostly due to better resource utilization. Since these
benchmarks do not take full advantage of the characteristics
of integrated heterogeneous systems, we then analyze a set
of heterogeneous benchmarks that use cross-device atomics to
synchronize and work together on shared data. We evaluate the
effect of LLC sharing on these workloads and find it reduces
execution times in average by 25% and up to 53% on the
most sensitive benchmark. We also find reductions in energy-
to-solution by more than 30% in 9 out of 11 benchmarks. To the
best of our knowledge, this is the first effort analyzing the effect
of cache sharing in integrated GPU-CPU systems with strongly
cooperative heterogeneous applications. The key conclusions
from this study are that LLC sharing:

o Has a limited, albeit positive, impact on traditional
GPGPU workloads such as those from the Rodinia suite.
Allows for faster communication between GPU and CPU
cores and can greatly improve the performance of compu-
tations that rely on fine-grained synchronization.

Can reduce memory access latencies by keeping shared
data closer and avoiding coherency traffic.

Improves resource utilization by allowing GPU and CPU
cores to fully use the available cache.

The rest of the paper is organized as follows. Section II gives
some background on heterogeneous computing and presents
the motivation behind this work. Section III reviews related
work. Section IV discusses the methodology we have used
and the benchmarks analyzed. In Section V we present and
discuss the experimental results obtained. Section VI presents
the conclusions we extract from this work.

II. BACKGROUND AND MOTIVATION

This section serves as an overview of heterogeneous architec-
tures and the memory consistency and cache coherence models
followed by GPUs and CPUs. We describe the new computa-
tional paradigm these systems make possible and present the
motivation that led to the evaluation we present in this work.

A. Heterogeneous Computing

GPUs and other accelerators have traditionally been discrete
devices connected to a host machine by a high bandwidth
interconnect such as PCI Express (PCle). Host and device have
different memory address spaces, and data must be copied
back and forth between the two memory pools explicitly by
the programmer. In this traditional model, the host allocates
and copies the data to the device, launches a computation
kernel, waits for its completion and copies back the result. This
offloading model leverages the characteristics of the GPU to
exploit data parallel regions, but overlooks the capabilities of
the general-purpose CPU. Deeply pipelined out-of-order cores
can exploit high instruction level parallelism (ILP), and are
better suited for regions of code where GPUs typically struggle,
such as those with high control flow or memory divergence.

On-die integration of GPU and CPU cores provides multiple
benefits: a shared memory pool avoids explicit data move-
ment and duplication; communication through the network-
on-chip instead of a dedicated high bandwidth interconnect
(PClIe) saves energy and decreases latency; reduced latency
enables efficient fine-grained data sharing and synchronization,
allowing programmers to distribute the computation between
devices, each contributing by executing the code regions they
are more efficient on. For further details we refer the reader
to the literature, where the benefits of integrated heterogeneous
architectures have already been explored [7]-[13].

In this work we focus on architectures used in the field
of HPC. Most HPC systems are built out of hundreds or
thousands of nodes, each composed of general purpose cores
and specialized accelerators. In many cases these accelerators
are GPUs, and the computation follows the master - worker
scheme described above. While technically it can be considered
heterogeneous computing, we believe the trend will continue
to be tighter integration and better utilization of all computing
resources. Figure 1 shows an example of a heterogeneous sys-
tem integrating CPU cores and GPU Streaming Multiprocessors
(SMs) on the same die. Two different LLC configurations are
shown. Configuration a) has separate L3 caches for GPU and
CPU; memory requests from one can only go to the other
through the directory. Configuration b) has a unified L3 cache
that both GPU and CPU can access directly and in equal
condition. We evaluate the effect that sharing the LLC as in
configuration b) has for heterogeneous computations where
GPU and CPU collaborate and share data.

B. Heterogeneous Programming Models and Architectures

Heterogeneous System Architecture (HSA) [14], [15] is a
multi-company effort led by companies such as AMD, ARM

169

CPU CPU SM SM
[T (7S] I T (ET5) L1 L1
C | |]
[
[[L2] [L2 |

[tz |
|

e T

P |

i [[- | i
ta)[BcPu) | [B (G b)[L3 (shared) |}
! I [I !

|Directory|Mem. controller| |Directory|Mem. controller|
| |

Fig. 1. Heterogeneous architecture with: a) Private LLCs b) Shared LLC.

Off-chip DRAM

and Samsung to create an open standard for heterogeneous
computing. The HSA specification allows for integrated GPU-
CPU systems sharing data in a unified virtual memory space
and synchronizing via locks and barriers like traditional multi-
core processors. The OpenCL programming model [16] offers
support for Shared Virtual Memory (SVM) since the 2.0
specification. On a system supporting SVM features, the same
pointer can be used indistinctly by the CPU and GPU, and
coherence is maintained by the hardware as in Symmetric
Multi-core Processors (SMP). The OpenCL 2.0 specification
provides a series of atomic operations that can be used to
guarantee race-free code when sharing data through SVM [16].
These atomic operations allow for fine-grained synchronization
among compute units, opening the door for heterogeneous
applications that work on shared data structures and coordinate
via low-overhead synchronization.

Unified Virtual Addressing (UVA) was introduced in
NVIDIA devices on CUDA 4 [17]. UVA allows the GPU
to directly access pinned host memory through the high-
bandwidth interconnect. This zero-copy memory allows appli-
cation programmers to use the same pointers in the device
and the host, improving programmability. However, on systems
with discrete GPUs, the interconnect (usually PCI Express) is
optimized for bandwidth and not latency, and therefore it is
seldom useful to rely on zero-copy memory. Integrated systems
such as the Tegra X1 [18] do not suffer from this problem,
and zero-copy memory can be used to avoid data movement
and replication. With CUDA 6 NVIDIA introduced Unified
Memory (UM). UM builds on top of UVA to further simplify
the task of GPU programming. On systems with discrete GPUs,
UM has the CUDA driver move data on-demand to and from
the device, removing the burden from the programmer. UM
is widely believed to be the next step towards a fully unified
coherent memory space between CPUs and GPU.

All the major vendors currently provide integrated heteroge-
neous systems fully supporting the capabilities described above.
AMD has a number of Accelerated Processing Units (APUs)
in the market with full system coherence between GPU and
CPU, and is expected to continue the push for heterogeneous
computing. Intel began integrating GPUs on-chip with their
Sandy Bridge processors. Both companies’ current products
tightly integrate GPU and CPU and support the Shared Virtual
Memory (SVM) features specified in OpenCL 2.0 [19], [20].

NVIDIA integrates general purpose ARM cores with their
graphics units in their Tegra line of products [18]. Mobile and
embedded chip vendors have been designing integrated system-
on-chips (SoCs) for years now, and most current mobile chips
integrate on the same die one or more general purpose CPU
cores and a GPU [21], [22].

C. Memory Consistency and Cache Coherence

Memory consistency models guarantee a specified ordering
of all load and store instructions. In general terms, the semantics
of a strict consistency model simplify programmability at the
cost of performance. Relaxed consistency models allow com-
pilers and hardware to perform memory reordering, increasing
performance. This complicates the task of the programmer,
since memory instructions may need to be protected with fences
or operated on with atomics.

The x86 ISA follows a variant of Sequential Consistency
(SC) [23] called Total Store Order (TSO) [24]. In this strict
model, loads following a store (in program order) can be exe-
cuted before the store if they are to a different memory address.
Although there is not much public information describing the
memory consistency models followed by GPUs from the major
vendors, they have been largely inferred to be relaxed models.
One of such models is Release Consistency (RC) [25]. RC
enables many memory optimizations that maximize throughput,
but is strict enough to allow programmers to reason about data
race conditions. RC is the consistency model defined in the
HSA standard [14], and it is followed in GPUs by vendors
such as ARM [26] and AMD [27].

Cache coherence protocols are pivotal to maintaining mem-
ory consistency within a system. They guarantee that all sharers
of a datum always obtain the latest value written and not stale
data. Regardless of the protocol itself (i.e. MESI, MOESI,
etc.), x86-based SMPs follow the coherence model Read For
Ownership (RFO). In an RFO machine, cores must obtain a
block in an exclusive state before writing to it. This scheme
is effective for workloads that exhibit temporal locality and
data reuse, where the cost of exclusively requesting blocks
and the associated invalidations is amortized over time. GPUs
have traditionally exhibited a different memory access behavior,
streaming through data with little data reuse. In addition, the
high memory traffic generated by the large number of threads
running concurrently exerts a high pressure in the memory
subsystem, and any additional coherence traffic would only
aggravate the problem. Because of this, GPUs implement very
simple coherence mechanisms with private write-through write-
combining L1 caches that can contain stale data [17], [28].

On the other hand, recent work shows that that the choice
of consistency model minimally impacts the performance of
GPUs [27]. While stricter consistency models and system
coherence does not come for free, researchers are already
working on solutions to solve the challenges faced [29]. We
believe integrated systems will change the way we understand
heterogeneous programming and change the characteristics of
heterogeneous workloads. Stricter consistency models across a

170

heterogeneous system will improve programmability and allow
programmers to maintain the memory semantics they are used
to on traditional SMPs. Therefore, in this work we perform
our evaluation of heterogeneous computations on a system that
implements a TSO consistency model with RFO coherence
across all computing elements. For future work we plan to also
evaluate different consistency models and measure their impact.

III. RELATED WORK

Lee and Kim analyzed the impact of LLC sharing between
GPU and CPU [1]. They find that the multi-threaded nature
of GPUs allows them to hide large off-chip latencies by
switching to different threads on memory stalls. In addition,
the data-streaming nature of GPU workloads shows little data
reuse. Therefore they conclude that caching is barely useful
for such workloads, and argue that cache management policies
in heterogeneous systems should take this into consideration.
They propose TAP, a cache management policy that detects
when caching is beneficial for the GPU application, and favors
CPU usage of the LLC when it is not. Although the policy
could be useful even on the heterogeneous computations we are
evaluating, their premise of cache insensitivity on GPUs does
not hold for computations where fine grained synchronization
is performed between compute units, as we will show in our
evaluation. Mekkat et al. build on the same premise [2]. They
use set dueling [30] to measure CPU and GPU sensitivity
to caching during time intervals. With this information, they
dynamically set a thread-level parallelism (TLP) threshold for
each interval. The threshold determines after what amount of
TLP the GPU’s memory requests start bypassing the LLC. The
goal again is to prevent the GPU from taking over most of the
LLC space and depriving the cache-sensitive CPU of it.

Other works have explored the challenges of resource sharing
within GPU-CPU systems. Ausavarungnirun et al. focus their
study on the memory controller [4]. They find the high memory
traffic generated by the GPU can interfere with the requests
from the CPU, violating fairness and reducing performance.
They propose a new application-aware memory scheduling
scheme that can efficiently serve both the bursty, bandwidth-
intensive GPU workloads and the time-sensitive CPU requests.
Kayiran et al. consider the effects on the network-on-chip
and memory controller [5S]. They monitor memory system
congestion and if necessary limit the amount of concurrency
the GPU is allowed. By reducing the amount of active warps
in the GPU, they are able to improve CPU performance in the
presence of GPU-CPU interference.

All these works analyze resource sharing within integrated
GPU-CPU systems, but they perform their evaluation on multi-
programmed workloads where GPU and CPU are executing
different unrelated benchmarks. This methodology can shed
light on some of the problems associated with resource sharing
in heterogeneous architectures, but it is not able to provide
any insight about the effect such sharing has in heterogeneous
computations where GPU and CPU cores collaborate and
share data. The goal of our work is to analyze how these
heterogeneous algorithms are affected by sharing the LLC.

IV. METHODOLOGY

In this section we present the methodology we follow in
our work. First, we discuss how we simulate our different
target hardware configurations. Next, we introduce the set of
benchmarks we leverage for our evaluation in Section V.

A. Hardware Simulation

We use gem5S-gpu [31] to simulate an integrated heteroge-
neous GPU-CPU system. gem5-gpu is a cycle-level simulator
that merges gem5 [32] and GPGPU-Sim [33]. We use gemS5’s
full-system mode running the Linux operating system. The
simulator provides full system coherence between GPU and
CPU using the MESI coherence protocol and follows the TSO
consistency model. For more details regarding the rationale
behind our choice of memory model, see Section II-C. Table I
lists the configuration parameters of the system. We simulate a
four core CPU and an integrated GPU composed of four Fermi-
like Streaming Multiprocessors (SMs) grouped in two clusters
of two. Considering NVIDIA Tegra X1 is composed of two
SMs [18], this configuration is our best guess as to how the
next generation of heterogeneous systems will be.

Figure 1 shows the topology of the simulated system. The
CPU’s L1 and L2 caches are private per CPU core. Each GPU
SM has a private L1, connected through a crossbar to the
shared L2, which is itself attached to the global crossbar. In
configuration a) the system has two L3 caches private to GPU
and CPU; configuration b) shows a unified L3 that can be used
by both. The LLC size listed in Table I refers to the shared
configuration; see Section V for details on how it is split for
the private LLC configuration. In both cases, the LLC(s) run in
the same clock domain as the CPU. This allows us to present a
fair comparison by setting the same access latency on both
configurations, albeit providing a conservative estimation of
the benefits of LLC sharing. All caches are write-back and
inclusive with a least recently used (LRU) replacement policy;
the cache line size is 128 bytes. The network-on-chip (NoC) is
modeled with gem5’s detailed Garnet model [34]. Flit size is 16
bytes for all links; data message size is equal to the cache line
size and fits within 9 flits (1 header + 8 payload flits); control
messages fit within 1 flit. In order to focus on the interactions
between GPU and CPU we select a region of interest for all
benchmarks, skipping initialization (memory allocation, input
file reading, etc.) and clean-up phases. The results shown in
Section V correspond only to this region. The power results
from section V-B were obtained with CACTI version 6.5 [35]
configured with the parameters shown in Table I.

B. Benchmarks

We evaluate the effect of LLC sharing in two sets of
heterogeneous benchmarks. First we look at Rodinia GPU [36],
a well-known benchmark suite used to evaluate GPUs. Initially
designed to run on discrete GPUs, the benchmarks explicitly
copy data to and from the device. We use a modified version of
the kernels provided by the gem5-gpu developers that removes

171

TABLE 1
SIMULATION PARAMETERS
CPU
Cores 4 @ 2 Ghz
L1D Cache 64kB - 4 way - Ins lat.
L1I Cache 32kB - 4 way - Ins lat.
L2 Cache 512kB - 8 way - 4ns lat.
GPU
SMs 4 - 32 lanes per SM @ 1.4 Ghz
L1 Cache 16kB + 48kB shared mem. - 4 way - 22ns lat.
L2 Cache 512kB - 16 way - 4 slices - 63ns lat.
LLC and DRAM
LLC 8MB - 4 banks - 32 way - 10ns lat.
DRAM 4 channels - 2 ranks - 16 banks @ 1200 MHz
RAS/RCD/CL/RP 32/14.16 / 14.16 / 14.16 ns
RRD/CCD/WR/WTR | 49/5/ 15/ 5ns

data movement and makes use of pointers, leveraging the shared
address space. The benchmarks analyzed are listed in Table II.

However, Rodinia benchmarks have little interaction between
CPU and GPU, as they were developed for heterogeneous
systems with discrete GPUs, and a general recommendation
for this kind of platforms is avoiding memory transfers between
CPU and GPU. Another possible set of benchmarks to perform
the kind of evaluation we are interested in could be the
Valar [37] benchmark suite. Valar is a set of benchmarks for
heterogeneous systems that focuses on the interaction of CPU
and GPU cores. However, the benchmarks are designed for
old AMD APUs that lack new characteristics such as memory
coherence and cross-device atomics. We therefore need a set
of heterogeneous benchmarks that allows us to explore the
possibilities and challenges of new features such as GPU-CPU
memory coherence and cross-device atomic operations. To this
end, we have prepared our own collection of benchmarks that
exploits the most recent features in heterogeneous integrated
systems. They present different heterogeneous computation
patterns and are summarized in Table III.

Four benchmarks (DSP, DSC, IH, and PTTWAC) deploy con-
current CPU-GPU collaboration patterns. In these benchmarks,
the input workload is dynamically distributed among CPU
threads and GPU blocks. DSP and DSC utilize an adjacent syn-
chronization scheme, which allows CPU threads and/or GPU
blocks working on adjacent input data chunks to synchronize.
Each CPU thread or GPU block has an associated flag that
is read and written atomically with cross-device atomics. Both
DSP and DSC are essentially memory-bound algorithms, as
they perform data shifting in memory. DSC deploys reduction
and prefix-sum operations, in order to calculate the output
position of the compacted elements. IH carries out an intensive
use of atomic operations on a set of common memory loca-
tions (i.e., a histogram). Chunks of image pixels are statically
assigned in a cyclic manner to CPU threads and GPU blocks.
These update the histogram bins atomically using cross-device
atomic additions. PTTWAC performs a partial transposition of
a matrix. It works in-place; thus, each matrix element has to
be saved (to avoid overwriting) and then shifted to the output
location. As each of these elements is assigned to a CPU thread

TABLE I

RODINIA BENCHMARKS
Benchmark Short Name | Dataset
Backprop RBP 256K nodes
Breadth-First Search | RBF 256K nodes
Gaussian RGA 512 x 512 matrix
Hotspot RHP 512 x 512 data points
LavaMD RLA 10 boxes per dimension
LUD RLU 2K x 2K matrix
NN RNN 1024K data points
NwW RNW 8K x 8K data points
Particlefilter RPF 10K particles
Pathfinder RPA 100K x 10K data points
Srad RSR 512 x 512 data points

or a GPU block, these need to coordinate through a set of
atomically updated flags.

In BFS the computation switches between CPU threads
and GPU blocks in a coarse-grain manner. Depending on
the amount of work of each iteration of the algorithm, CPU
threads or GPU blocks are chosen. CPU and GPU threads share
global queues in shared virtual memory. At the end of each
iteration, they are globally synchronized using cross-device
atomics. LCAS and UCAS are two kernels from the same
AMD SDK sample. First, a CPU thread creates an array which
represents a linked list to hold IDs of all GPU threads. Then,
in the first kernel (LCAS) each GPU thread inserts in lock-free
manner their respective IDs into the linked list using atomic
compare-and-swap (CAS). In the second kernel (UCAS) the
GPU threads unlink or delete them one-by-one atomically using
CAS. RANSAC implements a fine-grain switching scheme of
this iterative method. One CPU thread computes a mathematical
model for each iteration, which is later evaluated by one
GPU block. As iterations are independent, several threads and
blocks are working at the same time. TQ is a dynamic task
queue system, where the work to be processed by the GPU
is dynamically identified by the CPU. Several queues are
allocated in shared virtual memory. CPU threads and GPU
blocks access them by atomically updating three variables per
queue that represent the number of enqueued tasks, the number
of consumed tasks, and the current number of tasks in the
queue. The applicability of this task queue system is illustrated
by a real-world kernel: histogram calculation of frames from a
video sequence.

V. EVALUATION

We evaluate the effect of sharing the last-level cache by
running a set of heterogeneous benchmarks with two cache
configurations. For the private LLC configuration we split the
cache by giving 1/8 to the GPU and 7/8 to the CPU. We
follow current products from Intel and AMD where the ratio
of GPU-to-CPU cache size is between 1/8 and 1/16 [28], [44].
We evaluated different split ratios from 1/2 to 1/16 and saw
similar trends among them. Unfortunately, splitting the LLC
in this manner and directly comparing the results would not
provide a fair evaluation. The additional cache space available
to both CPU and GPU cores in the shared configuration may

172

affect the results if the benchmarks are cache sensitive. To
isolate the gains that are caused by faster communication and
synchronization from those that are due to better utilization
of the available cache space, we run all the benchmarks with
an extremely large, 32-way associative LLC of 1 GB total
aggregate size. Under this configuration the working set of most
benchmarks fits in the private LLC, and therefore the gains
cannot be attributable to the extra cache space.

A. Rodinia

We first analyze the Rodinia benchmark suite. As stated
in Section IV-B, these benchmarks have minimal interaction
between GPU and CPU. The one interaction all benchmarks
share is in the allocation and initialization of data by the host
prior to launching the computation kernel(s). Therefore, on a
shared LL.C configuration, if the working set of the benchmark
fits within the LLC, GPU memory requests will hit in the LLC
and avoid an extra hop to the CPU’s private LLC with the
corresponding coherence traffic.

Figure 2 shows speedup on the shared LLC configuration
normalized to private LLCs. Of the 11 benchmarks, 7 show
a speedup of over 10% with an 8MB LLC. Of those, RBF
and RLU lose all the speedup with a 1GB cache; we can
therefore attribute the gains to better resource utilization when
sharing the LLC. RBF has a significant amount of branch
and memory divergence and is largely constrained by global
memory accesses [45]. Our results confirm this and show that
the kernel benefits from caching due to data reuse. On the 1GB
configuration the GPU is able to fit the whole working set
in its private cache hierarchy; since there is no further GPU-
CPU interaction after the initial loading of data, there is no
performance benefit by sharing the LLC. We also observe a
similar behavior in RLU.

RBP, RPA and RSR speedup is also reduced on the 1GB
configuration, but still obtain 13%, 33% and 13% improvement
respectively. RSR features a loop in the host code calling the
GPU kernels a number of iterations. After each iteration, the
CPU performs a reduction with the result matrix, and therefore
the benchmark benefits from faster GPU-CPU communication.
The speedup is reduced on the 1GB configuration because
there is data reuse within the two GPU kernels, and the larger
private LLC allows more data to be kept on-chip. On RBP
the CPU performs computations on shared data before and
after the GPU kernel; the benefit of sharing the LLC is two-
fold: the GPU finds the data in the shared LLC at the start of
the kernel, and the CPU obtains the result faster by avoiding
an extra hop to the private GPU LLC. RPA sees the largest
performance improvement although there is no further GPU-
CPU communication past the initial loading of data; the gains
are thus attributable to the GPU finding the data in the shared
LLC at the start of the kernel. Both these benchmarks see
non-negligible performance gains despite the limited GPU-CPU
interaction. The reason is that the total execution time for both
benchmarks is low, and the effect of the initial hits on the host-
allocated data is magnified. We chose a small input set in order

TABLE III
SUMMARY OF HETEROGENEOUS BENCHMARKS

Benchmark Short Name | Field Computation Pattern Dataset

Breadth-First Search [38] BFS Graphs Coarse-grain switching NY/NE graphs [39]
DS Padding [40] DSP Data manipulation Concurrent collaboration | 2K x 2Kx 256 float
DS Stream Compaction [40] DSC Data manipulation Concurrent collaboration | 1M float
FineGrainSVMCAS link [41] LCAS Synthetic benchmark | Fine-grain linked list 4K elements
FineGrainSVMCAS unlink [41] UCAS Synthetic benchmark | Fine-grain linked list 4K elements

Image Histogram [42] H Image processing

Concurrent collaboration

Random and natural images (1.5M pixels, 256 bins)

PTTWAC Transposition [38] PTTWAC Data manipulation Concurrent collaboration | 197 x 35588 doubles (tile size = 128)
Random Sample Consensus [43] | RANSAC Image processing Fine-grain switching 5922 input vectors
Task Queue System [38] TQ Work queue Producer-consumer 128 frames
1.8 1.8
8mB m1GB 512KB imB =2mMB m128MB
1.6 1.6
1.4 1.4
. 1.2 1.2
& 0.8 g 0.8
0.6 < 0.6
0.4 0.4
0.2
o o
Gmean RBF RBP RHP RLU RNN RNW RPA Gmean RBF RBP RHP RLU RNN RNW RPA

Fig. 2. Speedup of Rodinia benchmarks with a shared LLC normalized to a
private LLC configuration.

to run our simulations within a reasonable time-frame. On large
computations this benefit would be diminished over time, hence
on a real hardware with larger input sets, it is likely the gains
would be minimal.

RNW is the only benchmark where the performance gain
of sharing the LL.C actually goes up to 27% when increasing
the LLC size to 1GB. The reason is the large input set used,
with a heap usage of 512MB. The GPU LLC on the private
configuration is not large enough to hold all the data; there is
data reuse within the kernel, but due to the large working set,
it is evicted out of the LLC before it is reused. On the shared
configuration, the GPU benefits both from finding the data in
the LLC and from being able to keep it there for reuse. In
addition, after the GPU kernel completes, the CPU reads back
the result matrix, benefiting from faster communication.

RNN experiences a small gain from sharing the LLC because
it features some GPU-CPU interaction beyond the initial load-
ing of data. When the GPU finishes computing distances, the
CPU reads the final distance vector and searches for the closest
value. The benchmark also benefits from the extra cache space,
and thus the gains are reduced on the 1GB configuration where
the 12MB input set fits in the LLC.

RGA, RHP, RLA, and RPF do not benefit from sharing the
LLC. RGA launches a kernel many times to operate on two
matrices and a vector. The benchmark benefits from caching
due to all the data reuse, but once the matrices and vector are
loaded, there is no further interaction with the CPU until the
kernel completes. Although the CPU then reads the data and
performs a final computation, this is just a small portion of the
execution time and thus the benefit is minimal. In RLA, the
kernel is optimized to access contiguous memory locations,
allowing the GPU to coalesce a large amount of memory

Fig. 3. Cache sensitivity of Rodinia benchmarks. Each column corresponds to
the GPU LLC size in a configuration with private caches. Results are normalized
to GPU LLC of size 512 KB.

accesses and reduce the total memory traffic pushed into the
cache hierarchy. This memory access pattern and a high data
reuse produces close to 99% cache hit rate in the GPU L1
caches despite an input set size of 8MB. As a consequence,
sharing the LLC provides no benefit beyond the initial loading
of data. A similar behavior can be observed in RPF, where the
small memory footprint of the kernel allows data to fit within
the GPU L1 and L2 caches. RHP performs multiple iterations
operating over the same three matrices, showing data reuse with
a large reuse distance. With a 1GB LLC the whole working
set is able to fit in the cache, but the kernel is mostly cache
insensitive and gains little from the increased hit rate. There is
no GPU-CPU communication, and the small benefit of initially
hitting in the LLC is diminished over the total execution time.

These results show that sharing the LLC does not provide
a significant benefit for computations such as the ones found
in the Rodinia benchmark suite, with minimal GPU-CPU
interaction and data sharing only at kernel boundaries. The
geometric mean speedup for all benchmarks is 9% on the
1GB configuration and 13% on the 8MB configuration, and
it is mostly due to the extra cache space available to the
GPU. In order to measure the sensitivity of the benchmarks
to GPU cache size, we run them with different LLC sizes of
4MB, 8MB, 16MB and 1GB on the private LLC configuration.
Following the 1/8 ratio of GPU to CPU LLC, the GPU obtains
512KB, 1MB, 2MB, and 128MB respectively. We keep the
same access latencies for all configurations in order to provide
a fair comparison. Figure 3 shows speedup as we increase
cache size, normalized to the 512KB GPU LLC. Confirming
our previous findings, we see that RBF, RGA, RLU, RNW
and RPA show sensitivity to cache size, obtaining over 20%
performance increase with an ideal 128MB cache. RGA and

173

18
1.6

2
0
\
‘b

:.,'
e‘é‘

m1GB

O &"

e
Fig. 4. Speedup of heterogeneous benchmarks with a shared LLC.

Speedup
o oo -
S O 00 =

?‘ &

)
& &

RBF show very high cache sensitivity, with up to 69% and 49%
improvement respectively with a more realistic 2MB cache.
RLA and RPF, as discussed earlier, make almost no use of the
LLC and therefore do not benefit from a larger cache. RHP
shows data reuse and sees minor gains with a 128MB LLC
that is able to fit the whole working set; with a smaller LLC
the number of cache misses increases, but the GPU is able to
hide the extra latency and the benchmark is thus mostly cache
insensitive. RBP and RSR show some sensitivity to cache size,
confirming the loss of speedup shown in Figure 2 is due to
the increased LLC size. RNN sees some improvements up to
the 2MB configuration, after which the working set fits within
the 16MB cache hierarchy. Although the 2MB of GPU LLC
are not enough to hold all the data, the kernel features no data
reuse and does not benefit from a larger LLC.

B. Heterogeneous Benchmarks

We run the heterogeneous benchmarks with two CPU worker
threads, with the exception of LCAS and UCAS which use
only one. As in Section V-A, we run the benchmarks also with
an ideal 1GB LLC to isolate the gains that come from the
additional cache space available on the shared configuration.

Figure 4 shows the speedup obtained with a shared LLC over
the private LLC configuration. Of the 11 benchmarks, 6 show
improvements of over 20% with a shared LLC. For BFS we
choose two different input graphs; the smaller NY graph has
variable amount of work per iteration, switching often between
GPU and CPU computation. The larger NE graph has many
iterations with a large amount of work, and therefore executes
mostly in the GPU, switching less often between GPU and
CPU. The performance gain for BFS-NY is higher than for
BFS-NE, achieving as much as a 56% speedup on the 1GB
configuration. This is reduced to 11% on BFS-NE with the
1GB LLC because with limited GPU-CPU communication, the
benefit comes mostly from additional cache space.

In order to understand how sharing the LLC affects cache
hit rates, we show in Figure 5 the L3 hit rates on both
the private and shared configurations. With private LLCs
we calculate the aggregated L3 hit rate as: (Hitscpy +
Hitsgpy)/(Accesscpy + Accessgpy) * 100. We see that
BFS-NE obtains 39% more hits in the private LLC configura-
tion by increasing the size from 8MB to 1GB. The computation
is mostly performed by the GPU, where only IMB of LLC is

8MB - Private LLC M 1GB - Private LLC W 1GB - Shared LLC

& Q 9 S XY o o 5 Q)
S P U S S QP F
& G 9 < & & NN

&~
&

8MB - Shared LLC

=
A @ ©® O
© © ©o o©

L3 Hit rate %

N
=]

Fig. 5. LLC hit rates for private and shared configuration.

available on the private 8MB configuration. Being able to use
the remaining 7MB provides a significant gain.

The speedup observed in BFS-NY supports the relevance
of fast GPU-CPU communication on workloads making an
extensive use of atomic synchronizations. In gem5-gpu atomics
are implemented with read-modify-write (RMW) instructions.
A RMW instruction is composed of two parts, an initial load
(LD) of the cache block with exclusive state, and a following
write (WR) with the new value. Once a thread successfully
completes the LD, no other thread can modify that memory
location until the WR is finished, guaranteeing atomicity.

Figure 6 shows the average access time to perform the LD
part of the RMW on a shared LLC configuration, normalized
to private LLCs. We can see how BFS performs the operation
40% and 45% faster with a shared LLC for the NE and NY
graphs respectively. On the other hand, DSC and DSP perform
slower RMW LDs with a shared LLC, and nevertheless show
speedups of 27% and 42% respectively. The average time
to perform the RMW LD is higher because there are more
L1 misses when the exclusive LD is attempted. This is a
side-effect of the faster GPU-CPU communication. GPU and
CPU cores compete for the cache blocks holding the array of
synchronization flags, invalidating each other. The shorter the
latency to reach the current owner of the block, the more likely
it is for a core to have relinquished ownership of the block
by the time it is reused. The reason the benchmarks obtain a
speedup with a shared LLC is that the overall memory access
time for all accesses is lower. In particular for the GPU, the
average latency for all the threads of a warp to complete a load
instruction is 65% and 40% lower for DSC and DSP on the
8MB configuration. Figure 6 shows how both benchmarks go
from lower than 10% LLC hit rates with a private configuration
to above 80% when sharing the LLC. The benchmarks are
memory bound and the reduced memory latency caused by
hitting in the shared LLC compensates the higher miss rate
when performing the atomics.

Figure 7 shows the average GPU and CPU instructions per
cycle (IPC) with a shared LLC configuration normalized to
private LLCs. DSC and DSP achieve up to 30% and 47% higher
GPU IPC by sharing the LLC. The more latency-sensitive
CPU cores see a large increase of up to 49% on the 1GB
configuration when the whole working set fits in the cache.

IH performs a histogram on an input image. We configure
the benchmark with 256 bins, which fit within 9 cache blocks

174

m1GB

s

< = ~ w »
clrUNUWOROGV

Normalized Latency

=)

<]
& RS

o &

<z> & qé Qy

Fig. 6. Average latency to perform a RMW LD normalized to private LLC.

(8 if aligned to block size); our intuition was that these blocks
would be highly contended and the benchmark would benefit
from faster atomic operations. Interestingly we see only a
relatively small speedup of 14% and 8% on the 8MB and 1GB
configurations, respectively. In Figure 6 we see that sharing
the LLC does not reduce the time to perform a RMW LD. The
speedup is small because in the end, the CPU is the bottleneck.
The GPU benefits from multiple bins falling on the same cache
line, as threads from the same warp can increment multiple bins
in a fast manner. That, on the other hand, causes false sharing
on the CPU caches. The work is statically partitioned, so the
GPU completes its part while the CPU takes 10x longer to finish
1/8 of the image. We observe how the GPU does indeed benefit
from sharing the LLC; the average latency for all the threads
of a warp to finish a LD operation is reduced by 63% and 59%
with a shared LLC. After the GPU finishes computing its part,
the CPU remains computing, and eventually all the lines with
the bins are loaded into the CPU caches, obtaining no benefit
from the shared LLC. Figure 7 clearly depicts this; the IPC of
the GPU increases over 2x on the 8MB configuration, while
the CPU sees barely any improvement.

One of the consequences of using an image as the input
is that we observe less conflict than expected for the cache
blocks holding the bins. Images usually have similar adjacent
pixels, and it is likely that after obtaining a block in exclusive
to perform the atomic increment, the following pixels require
incrementing a bin in the same block. In order to evaluate
the shared LLC with a different memory access pattern, we
also run the benchmark with a randomized pixel distribution
(IH-RAND). This input reduces the number of RMW LD hits,
indicating there is more contention for the lines holding the
bins. Ultimately, however, the number of cache hits reduced is
low, as with 32 out of 256 bins per cache block it is still likely
that the next atomic increment falls on a bin in the same block.

PTTWAC performs a partial matrix transposition in-place.
The input matrix requires 53 MB of memory, hence not fitting
in the cache hierarchy on the 8MB configuration. Sharing an
8MB LLC with such a large input barely increases L3 hit rate,
but provides a 39% speedup. Figure 6 shows that this is due
to a significant reduction on the average latency to perform the
RMW LD. On the 1GB configuration the latency reduction is
even larger, but the speedup is down to 27%. In this case the
cache is large enough to fit the matrix, and the benchmark only
benefits from faster atomics.

175

~
«

CPUIPC

<&

B GPU IPC

°
P &
RO

=
= N

o
n

Normalized IPC

Q o
X qy@
&

0

‘9’
&

L
& &

S &
& é$ &

‘(
Q g &

Fig. 7. Normalized IPC with a shared 8MB LLC.

In RANSAC the CPU first performs a fitting stage on a
sample of random vectors. When finished, it signals the GPU
to proceed with the evaluation stage where all the outliers
are calculated. This process is repeated until a convergence
threshold is reached. We see that sharing the LLC improves
performance by 12% for both cache sizes without speeding the
atomic operations. Both GPU and CPU threads spin reading
the synchronization flag when their counterpart is computing;
therefore there is no contention for the block once it is read. The
hit rate when performing a RMW LD is 72% for both shared
and private LLC configurations, and thus the average access
time is already low. The speedup in this case is not produced
by faster synchronization, but from sharing the vector array.
The memory footprint of the array is small, increasing L3 hit
rate only by a 10%. Nevertheless, Figure 7 shows this 10% has
a large effect on the latency-sensitive CPU, that achieves over
60% higher IPC with a shared LLC. The GPU also finds the
vector array in the LLC on the first iteration, and gains a more
modest 17% IPC. The total execution time of this benchmark
is low, and thus the impact of initially hitting in the LLC is
magnified. As with Rodinia, on a longer executing benchmark
the gain would diminish.

LCAS uses a CPU thread to traverse half of a linked list
while the GPU threads traverse the other half, inserting in
each position an identifier and atomically updating the head
of the list. The cache block containing the head is highly
contended, causing the atomic operations to be the bottleneck.
UCAS traverses the list resetting the identifiers to 0. The
difference lies in the order they access the elements. Although
the data structure containing the identifiers is conceptually
a linked list, it is implemented as an array where the first
position contains the array index of the next element. On LCAS
the CPU inserts identifiers in consecutive array positions and
GPU threads update the array position matching their thread
identification number. Hence, threads from the same warp
update contiguous positions. On UCAS the order in which the
elements are accessed is the reverse order in which the linked
list was updated on LCAS, i.e. the reverse order in which
the threads were able to perform the atomic operation. This
difference causes the observed speedup variation. On UCAS
the scattered access pattern causes many blocks to be moved
back and forth between GPU and CPU, and is reflected by
the near 0% L3 hit rate seen in Figure 5. In this case the data
migration latency from GPU to CPU is also an important factor.

HDRAM =

-

3

e 2 2
2 o 0 »

Normalized energy to solution
e
~

o

ed I

te

ed NN

te

ed NN

te

ed NN

te

ed [N

te
te
te
te
ed [N
te

mmmmmmmmmmmmmmmmmmmmmm

Priv:
Sha
Priv:
Sha
Privi
Sha
Priv
Priv:
Priv:
Shal
Priv:
Shal
Priv:
Sha
Priv:

[~]

SC

=]
o

Si IH IH-RAND PTTWAC RANSAC TQ LCAS Ucas

. Energy-to-solution normalized to private LLC.

The results show that although UCAS achieves on average a
lower latency reduction to perform a RMW LD with a shared
LLC, the benefit of faster data movement actually renders a
higher speedup compared to LCAS.

In TQ the CPU is in charge of inserting 128 frames in
several queues. GPU blocks dequeue individual frames and
generate their histogram. As the histogram of each frame
is only accessed by one GPU block, it will be kept in L1
ensuring low latency for RMW operations already on the private
LLC configuration. Additionally, the number of atomics on
the more contended control variables of the queues is very
small compared to the amount of atomic operations on the
histograms. Thus, the average latency to perform the RMW is
not reduced by sharing the LLC. However, the LLC hit rate is
higher in the shared configuration, because the GPU blocks will
eventually read frames previously cached by the CPU thread,
when enqueuing them. This explains the 10% speedup on the
8MB configuration. The improvement is much higher on the
1GB configuration (34%) because the larger cache can keep
the entire pool of 128 frames (54MB) and the queues.

Figure 8 shows energy-to-solution with an 8MB LLC nor-
malized to private LLCs. All benchmarks show that sharing the
LLC decreases energy-to-solution, over 30% on 9 of the 11. For
all benchmarks static power is reduced due to shorter execution
times. The other major reduction comes from lower L3 dynamic
power. A shared LLC increases hit rates and avoids the extra
requests and coherence traffic caused by a cache miss. This
can lead to a significant reduction as in BFS, RSC, RANSAC,
LCAS and UCAS. The third reduction comes from DRAM
dynamic power. The results we present in this section are of
the benchmark’s region of interest; the data has already been
allocated an initialized; in most cases the data is already on-
chip, therefore the total number of off-chip accesses is already
low. Sharing the LLC improves resource utilization and allows
for data to stay longer in the hierarchy, reducing even further
off-chip traffic. The exceptions are PTTWAC and TQ. Both
benchmarks have a working set size far larger than the cache
hierarchy, and must still load data from DRAM. The shared
LLC minimally reduces this in PTTWAC, and slightly increases
it in TQ. The reason is that the frames sometimes evict the
queues from the shared LLC, causing off-chip write-backs and
subsequent reloads. On the private configuration the queues are
able to stay in the CPU’s LLC.

176

VI. CONCLUSIONS

This paper was motivated by the lack of efforts focusing on
the effects of resource sharing in heterogeneous computations.
We believe the tighter integration of CPU cores with GPUs
and other accelerators will change the way we understand
heterogeneous computing in the same way the advent of multi-
core processors changed how we think about algorithms.

Our results show that the Rodinia benchmark suite with
coarse-grained GPU-CPU communication experiences an av-
erage 13% speedup using an 8MB shared LLC versus a private
LLC configuration. We have shown that the gain is mainly
due to the extra cache space available to the GPU or due to
short execution times. We have additionally analyzed a set of
heterogeneous benchmarks featuring stronger CPU and GPU
collaboration. These show that computations that leverage the
shared virtual address space and fine-grained synchronization
achieve an average speedup of 25% and of up to 53% with an
8MB shared LLC. In addition, energy-to-solution is reduced for
all benchmarks due to lower static power and L3 and DRAM
dynamic power consumption.

Our results indicate that sharing the LLC in an integrated
GPU-CPU system is desirable for heterogeneous computations.
The first benefit we observed is due to the faster synchroniza-
tion between GPU and CPU. In applications where fine-grained
synchronization via atomic operations is used and many actors
contend to perform the atomics, accelerating this operation
provides considerable speedups. The second benefit is due to
data sharing; if GPU and CPU operate on shared data structures,
sharing the LLC will often reduce average memory access
time and dynamic power. We have observed this effect both
with read-only and exclusive read-write data. The third benefit
we observed is due to better utilization of on-chip resources.
A cache hierarchy where the LLC is partitioned will often
underuse the cache space available, while sharing it guarantees
full utilization if needed.

Nevertheless, resource sharing between such disparate com-
puting devices entails additional problems. We have seen an
increase of conflict misses specially with large input sets. In
these cases the benefits of sharing the LLC offsets the draw-
backs. However, we are only focusing on computations that
fully leverage the characteristics of integrated heterogeneous
architectures. In the last few years researchers have shown and
proposed solutions for the challenges of resource sharing with
other types of workloads, and further investigation is required
if the trend of GPU-CPU integration is to continue.

Summing up, the benefits we have listed encourage a rethink-
ing of heterogeneous computing. In an integrated heterogeneous
system, computation can be divided into smaller chunks; each
chunk can be executed on the computing device that is best
suited for, seamlessly sharing data structures between compute
units and synchronizing via fine-grained atomic operations.
Sharing on-chip resources such as the last-level cache can
provide performance gains if the algorithms fully leverage the
capabilities of these integrated systems.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of
Science and Innovation (contract TIN2015-65316-P) and by the
BSC/UPC NVIDIA GPU Center of Excellence.

(1]

[2]

(3]

(4]

(3]

(6]

(71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]

REFERENCES

J. Lee and H. Kim, “Tap: A TLP-aware cache management policy for
a CPU-GPU heterogeneous architecture,” in IEEE 18th International
Symposium on High-Performance Computer Architecture (HPCA), 2012.
V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai, “Managing shared last-
level cache in a heterogeneous multicore processor,” in International
Conference on Parallel Architectures and Compilation Techniques, 2013.
M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware memory
controller for dynamically balancing GPU and CPU bandwidth use in an
MPSoC,” in Design Automation Conference (DAC), 2012, pp. 850-855.
R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged memory scheduling: Achieving high performance and
scalability in heterogeneous systems,” in 39th International Symposium
on Computer Architecture (ISCA), 2012, pp. 416-427.

O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T.
Kandemir, G. H. Loh, O. Mutlu, and C. R. Das, “Managing GPU concur-
rency in heterogeneous architectures,” in 47th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2014, pp. 114-126.

J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Adaptive virtual channel
partitioning for network-on-chip in heterogeneous architectures,” ACM
Trans. Des. Autom. Electron. Syst., vol. 18, no. 4, pp. 48:1-48:28, 2013.
M. Daga, A. M. Aji, and W. Feng, “On the efficacy of a fused CPU+GPU
processor (or APU) for parallel computing,” in Symposium on Application
Accelerators in High-Performance Computing, 2011.

M. Daga and M. Nutter, “Exploiting coarse-grained parallelism in B+ tree
searches on an APU,” in SC Companion: High Performance Computing,
Networking Storage and Analysis (SCC), 2012.

M. Daga, M. Nutter, and M. Meswani, “Efficient breadth-first search on a
heterogeneous processor,” in /IEEE International Conference on Big Data,
Oct. 2014, pp. 373-382.

M. C. Delorme, T. S. Abdelrahman, and C. Zhao, “Parallel radix sort
on the amd fusion accelerated processing unit,” in 42nd International
Conference on Parallel Processing, Oct. 2013, pp. 339-348.

J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins on the
coupled CPU-GPU architecture,” Proc. VLDB Endow., vol. 6, no. 10, pp.
889-900, Aug. 2013.

J. Hestness, S. W. Keckler, and D. A. Wood, “GPU computing pipeline
inefficiencies and optimization opportunities in heterogeneous CPU-GPU
processors,” in IEEE International Symposium on Workload Characteri-
zation (IISWC), 2015, pp. 87-97.

W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors,” Parallel Comput.,
vol. 49, no. C, pp. 179-193, Nov. 2015.

Heterogeneous System Architecture: A Technical Review, AMD, 2012.
[Online]. Available: http://amd-dev.wpengine.netdna-cdn.com/wordpress/
media/2012/10/hsal0.pdf

W. Hwu, Heterogeneous system architecture. Morgan Kaufman, 2016.
The OpenCL Specification v2.0, Khronos OpenCL Working Group, 2015.
[Online]. Available: https://www.khronos.org/registry/cl/specs/opencl-2.
0.pdf

CUDA C Programming Guide, NVIDIA Corporation, 2014. [Online].
Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
NVIDIA. (2015) NVIDIA Tegra X1. [Online]. Available:
//www.nvidia.com/object/tegra-x1-processor.html

Compute Cores. Whitepaper, AMD, 2014. [Online]. Available: https:
/Iwww.amd.com/Documents/Compute_Cores_Whitepaper.pdf

http:

Intel Corporation. (2015) The compute architecture
of Intel processor graphics Gen9. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/c5/9a/The-

Compute- Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
Qualcomm. (2013) Snapdragon S4 processors: System on chip
solutions for a new mobile age. Whitepaper. [Online]. Avail-
able: https://www.qualcomm.com/documents/snapdragon-s4-processors-
system-chip-solutions-new-mobile-age

177

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Exynos 5. Whitepaper, Samsung, 2012. [Online]. Available: http:/
www.samsung.com/global/business/semiconductor/minisite/Exynos/data/
Enjoy_the_Ultimate_ WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Comput., vol. 28, no. 9,
pp. 690-691, Sep. 1979.

S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: X86-
TSO,” in 22Nd International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), 2009, pp. 391-407.

S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66-76, Dec. 1996.

J. Goodacre and A. N. Sloss, “Parallelism and the ARM instruction set
architecture,” Computer, vol. 38, no. 7, pp. 42-50, Jul. 2005.

B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for
massively-threaded throughput-oriented processors,” in 40th International
Symposium on Computer Architecture (ISCA), 2013, pp. 201-212.

GNC Architecture. Whitepaper, AMD, 2012. [Online]. Available:
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf

J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,
S. K. Reinhardt, and D. A. Wood, “Heterogeneous system coherence for
integrated CPU-GPU systems,” in 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013, pp. 457-467.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in 34th International
Symposium on Computer Architecture (ISCA), 2007, pp. 381-391.

J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-
gpu: A heterogeneous CPU-GPU simulator,” IEEE Computer Architecture
Letters, vol. 14, no. 1, pp. 34-36, Jan. 2015.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.
A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in International
Symposium on Performance Analysis of Systems and Software, 2009.

N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in International
Symposium on Performance Analysis of Systems and Software, 2009.

N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to
understand large caches,” 2007.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in International Symposium on Workload Characterization, Oct. 2009.
P. Mistry, Y. Ukidave, D. Schaa, and D. Kaeli, “Valar: A benchmark suite
to study the dynamic behavior of heterogeneous systems,” in Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units (GPGPU-6). ACM, 2013, pp. 54-65.

W.-M. Hwu, Heterogeneous System Architecture: A new compute platform
infrastructure. Morgan Kaufmann, 2015.

University of Rome ”La Sapienza”, “Oth DIMACS Implementation Chal-
lenge,” 2014, http://www.dis.uniromal.it/challenge9/index.shtml.

J. Gémez Luna, L.-W. Chang, 1.-J. Sung, W.-M. Hwu, and N. Guil,
“In-place data sliding algorithms for many-core architectures,” in 44th
International Conference on Parallel Processing (ICPP), Sep. 2015.
AMD, “AMD accelerated parallel processing (APP) software devel-
opment kit (SDK) 3.0,” http://developer.amd.com/tools-and-sdks/opencl-
zone/amd-accelerated-parallel-processing-app-sdk/, 2016.

J. Gomez-Luna, J. M. Gonzalez-Linares, J. I. Benavides, and N. Guil,
“An optimized approach to histogram computation on GPU,” Machine
Vision and Applications, vol. 24, no. 5, pp. 899-908, 2013.

J. Gomez-Luna, H. Endt, W. Stechele, J. M. Gonzalez-Linares, J. 1.
Benavides, and N. Guil, “Egomotion compensation and moving objects
detection algorithm on GPU,” in Applications, Tools and Techniques on
the Road to Exascale Computing, ser. Advances in Parallel Computing,
vol. 22. 10S Press, 2011, pp. 183-190.

Intel Corporation. (2013) Products (formerly Haswell). [Online].
Available: http://ark.intel.com/products/codename/42174/Haswell

S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads,” in IEEE International
Symposium on Workload Characterization (IISWC), Dec. 2010.

	Message from the General Chair
	Message from the Program Co-Chairs
	IISWC 2016 Organization
	IISWC 2016 Sponsors and Supporters
	Running on Empty: Getting Work Done on Battery-Free Energy Harvesting Platforms
	The Convergence of Physical/Digital Worlds: Implications on Workloads & Architecture
	TailBench: A Benchmark Suite and Evaluation Methodology for Latency-Critical Applications
	Hetero-Mark, A Benchmark Suite for CPU-GPU Collaborative Computing
	Measuring and Modeling On-Chip Interconnect Power on Real Hardware
	Characterization of Quantum Workloads on SIMD Architectures
	Characterizing the Workload of a Netflix Streaming Video Server
	Characterization and Mitigation of Power Contention across Multiprogrammed Workloads
	Container Management as Emerging Workload for Operating Systems
	Overhead of Deoptimization Checks in the V8 JavaScript Engine
	Workload Characterization for Microservices
	PBench: A Benchmark Suite for Characterizing 3D Printing Prefabrication
	ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures
	SPEC-AX and PARSEC-AX: Extracting Accelerator Benchmarks from Microprocessor Benchmarks
	Rebalancing the Core Front-End through HPC Code Analysis
	Quantitative Characterization of the Software Layer of a HW/SW Co-Designed Processor
	Fathom: Reference Workloads for Modern Deep Learning Methods
	ID-Cache: Instruction and Memory Divergence Based Cache Management for GPUs
	Evaluating the Effect of Last-Level Cache Sharing on Integrated GPU-CPU Systems with Heterogeneous Applications
	GPU Concurrency Choices in Graph Analytics
	Memory Controller Design Under Cloud Workloads
	A Simulation Analysis of Reliability in Primary Storage Deduplication
	Quantifying the Performance Impact of Large Pages on In-Memory Big-Data Workloads
	Analyzing Power Consumption and Characterizing User Activities on Smartwatches: Summary
	Resilience Characterization of a Vision Analytics Application Under Varying Degrees of Approximation
	Identifying Representative Regions of Parallel HPC Applications: a Cross-architectural Evaluation
	Power-Aware Characterization and Mapping of Workloads on CPU-GPU Processors
	Treelogy: A Benchmark Suite for Tree Traversal Applications
	Characterizing Memory Bottlenecks in GPGPU Workloads
	Untitled

